Parikh's Theorem Does Not Hold for Multiplicities

نویسنده

  • Ion Petre
چکیده

We consider the question of whether the famous Parikh's theorem holds with multiplicities i.e., for formal power series instead of languages. We introduce two families of semilinear formal power series over a commutative product monoid. The strict hierarchy of algebraic, rational, recognizable and semi-linear formal power series is proved and in this way it is established that the Parikh's theorem does not hold with multiplicities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On semilinearity in formal power series

A notion of semilinearity is introduced for formal power series as a natural generalization of semilinear languages over a commutative monoid. Some closure properties of the semilinear languages are established also for formal power series. In this way, a classical result due to Eilenberg and Sch utzenberger and some results due to Ginsburg are extended to series. We also prove that Parikh's t...

متن کامل

Two General Results on Intuitionistic Bounded Theories

We study, within the framework of intuitionistic logic, two well-known general results of (classical logic) bounded arithmetic. Firstly, Parikh’s theorem on the existence of bounding terms for the provably total functions. Secondly, the result which states that adding the scheme of bounded collection to (suitable) bounded theories does not yield new Π2 consequences. Mathematics Subject Classifi...

متن کامل

A Fully Equational Proof of Parikh's Theorem

We show that the validity of Parikh’s theorem for context-free languages depends only on a few equational properties of least pre-fixed points. Moreover, we exhibit an infinite basis of μ-term equations of continuous commutative idempotent semirings. AMS Subject Classification (2000): 03C05, 16Y60, 68Q42, 68Q45, 68Q70.

متن کامل

Proving Parikh's theorem using Chomsky-Schutzenberger theorem

Parikh theorem was originally stated and proved by Rohkit Parikh in MIT research report in 1961. Many different proofs of this classical theorems were produced then; our goal is to give another proof using Chomsky-Schutzenberger representation theorem. We present the proof which doesn't use any formal language theory tool at all except the representation theorem, just some linear algebra.

متن کامل

Extending Parikh's Theorem to Weighted and Probabilistic Context-Free Grammars

We prove an analog of Parikh’s theorem for weighted context-free grammars over commutative, idempotent semirings, and exhibit a stochastic context-free grammar with behavior that cannot be realized by any stochastic right-linear context-free grammar. Finally, we show that every unary stochastic context-free grammar with polynomially-bounded ambiguity has an equivalent stochastic right-linear co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Automata, Languages and Combinatorics

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1999